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Abstract
A recent model for proton transfer in hydrogen-bonded chains given by Pang and
Müller-Kirsten (Pang X F and Müller-Kirsten H J W 2000 J. Phys.: Condens.
Matter 12 885) is critically reconsidered. The model violates a basic symmetry
of the system. The meaning of the model parameters is overinterpreted. The
model can be applied only to describe the motion of ionic defects. The kink
solutions corresponding to bonding defects obtained in this work by Pang and
Müller-Kirsten are proven to be incorrect.

In a recent paper, Pang and Müller-Kirsten [1] have presented a model for use in investigating
the mechanism of the formation of ionic and bonding defects and the interaction between the
protons and heavy ions in hydrogen-bonded molecular systems. The authors of [1] claim that
they have suggested for the first time a two-component model which simultaneously admits
analytic soliton solutions of different types corresponding to two different kinds of defect.

However,

(a) the physical motivation for the choice of some parameters in their discrete model
Hamiltonian is not clear, and

(b) the model does not describe both types of defect simultaneously.

In fact, models which allow for analytic solutions for a wide range of kink velocities were
suggested soon after the pioneering work by Antonchenko et al [2]. It was realized [3–10] that
in order to obtain the two-component model, which allows for analytic solution, one should
consider the displacements of the heavy ions instead of their relative displacements. In at least
two [5, 7] of these papers (not cited in [1]) a model has been investigated which gives in the
continuum approximation exactly the same equations of motion as the ones treated in [1].
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(a) The Hamiltonian of the system considered in [1] is H = Hp + Hion + Hint. The proton,
heavy-ion, and interaction terms are given by
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with the proton on-site potential chosen to be the φ4-potential:

U(Rn) = U0[1 − (Rn/R0)
2]2. (4)

Here Rn is the displacement of the nth proton from the middle of the bond between the
nth and the (n + 1)th heavy ions in the static case. R0 is the distance between the central
maximum and one of the minima of the double-well potential. U0 is the height of the potential
barrier. un is the displacement of the nth heavy ion from its equilibrium position. Masses and
conjugate momenta of the proton and the heavy-ion subsystems are given by m, M , pn = mṘn,
and Pn = Mu̇n respectively. The parameter β is the linear elastic constant for the heavy-ion
sublattice. The quantity ω0 is claimed to be the frequency of harmonic vibrations of the protonic
sublattice, and the term 1

2mω2
1RnRn+1 is suggested to ‘show the correlation interaction between

neighbouring protons caused by dipole–dipole interactions’.
Now let us rewrite equation (1) in the following way:
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with the effective on-site potential
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While the authors of [1] insist on the great importance of the introduction of different ω0

and ω1 into the model, it is clearly seen that the proton–proton interaction is given solely by
the second term of equation (5) with a spring constant mω2

1/2. The single role of the parameter
ω2

0 is to change the parameters (not the shape3) of the double-well potential (4) through the
difference (ω2

0 − ω2
1). So the quantity ω0 has nothing to do with the frequency of harmonic

vibrations of the proton sublattice, and there is no need at all to introduce this parameter into
the model Hamiltonian. In fact, to obtain the proton Hamiltonian of the form (5) it suffices to
put ω0 = ω1 in (1).

Now let us consider the interaction part (3) of the system Hamiltonian. First of all, it
cannot be accepted for symmetry reasons. For the symmetric hydrogen-bonded chain which is
described with the help of symmetric double-well on-site potential for the proton subsystem,

3 In fact, for ω2
0 − ω2

1 > 4U0/mR2
0 we get the single-well effective on-site potential, which is not the case of interest

for the problem of proton transport in hydrogen-bonded chains.
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the interaction of a particle with its neighbours to the left should be the same as the interaction
with the neighbours to the right. But the first term in equation (3) describes the interaction of
the nth proton with the nearest heavy ion to the right and with the next-nearest heavy ion to
the left. Similarly, the second term in equation (3) has a contribution from the interaction of
the spring between nth and (n + 1)th proton with the two heavy ions, one of which is located
between the two protons, and another one to the right of the spring.

Secondly, the following definition of the coupling constants is not justified:

χ1 = ∂ω2
0/∂un and χ2 = ∂ω2

1/∂un.

If we accept this rationale, expression (3) should be expanded in a series in the relative heavy-
ion displacement, namely ρn = (un+1 − un). The other question is why the parameter χ1

has been chosen to be determined solely by the properties of ω2
0 as a function of heavy-ion

displacements. Instead, it has to be given by some combination of the derivatives of U ′
0, R

′
0,

as well as of ω2
1.

Now let us consider more closely the term which comes from the spring interaction energy
in (5). It is easy to see that the derivative of ω2

1 contributes to the coupling constants χ1 and
χ2, constants with the same absolute value but of opposite sign. When we proceed with
the continuum approximation, the sum of these two contributions vanishes. So the resulting
interaction term depends only on the derivatives of the effective on-site potential parameters
U ′

0 and R′
0.

(b) In the continuum approximation, equations of motion for the Hamiltonian (1)–(3) are
given by
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where u0 is a lattice constant, nu0 → x, and the sound velocities for the proton and heavy-ion
sublattices are given by v2

1 = (ω1u0)
2/2, C2

0 = βu2
0/M , respectively.

For the travelling wave solutions of the form R(x, t) = R(x−vt) and u(x, t) = u(x−vt),
equation (8) gives

∂u(x − vt)

∂x
= − m

M

(χ1 + χ2)u0

C2
0 − v2

R2(x − vt) + g

where g is an integration constant. To obtain the kink solution, one should apply the boundary
conditions

∂u(x − vt)

∂x
= 0,

∂R(x − vt)

∂x
= 0 for (x − vt) → ±∞. (9)

Then the integration constant is calculated as

g = R′2
0 mu0(χ1 + χ2)

M(C2
0 − v2)

where R′2
0 has replaced R2

0 used in [1] (of course, R′
0 = R0 for ω1 = ω0). The kink solution

reads

R(x, t) = ±R′
0 tanh

[
x − vt

l(v)

]
(10)
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and
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where the kink width l(v) is given by
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and the third characteristic velocity v∗ can be found from
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2u2
0R

′4
0

2MU ′
0

.

The kink solutions of the form (10), (11) exist provided l2(v) > 0. There are two
possibilities for the ratio of the proton and the heavy-ion subsystem sound velocities.

(1) v1 > C0. This is a commonly considered situation for hydrogen-bonded chains (since
M � m). In this case the kink solutions exist for

0 < v < v∗ or C0 < v < v1.

The slow kink solutions are proven to be stable [3].

(2) C0 > v1 (the choice of parameters in [1]). The kink solutions exist for

0 < v < min(v1, v
∗) or max(v1, v

∗) < v < C0.

It is clearly seen that the kink solutions (10) for both low- and high-velocity ranges have
the same amplitude R′

0 which depends neither on the coupling constants (χ1 + χ2) nor on the
kink velocity v. These solutions correspond to the proton transition over the barrier of the
double-well on-site potential (6), i.e., to the ionic defect.

The kink solutions with a variable amplitude of the proton displacements found in [1] have
been derived with the incorrect application of the boundary conditions (9). The authors have
not appreciated the shift of the minima of the on-site potential caused by the different values of
ω2

0 and ω2
1. As a result, expressions (18)–(20) in [1] do not satisfy equations of motion (7), (8).

Thus, all the discussion (sections 4–6 of [1]) concerning the kink solutions with the protons
being displaced beyond the heavy-ion positions has no physical meaning. The kink solutions
of the form (10), (11) describe only the ionic defects and not the Bjerrum ones.

Furthermore, if there were solutions with the protons displaced beyond the heavy-ion
positions4, it would be a great mistake to ascribe them some physics. By the very definition of
the double-well on-site potential for the proton, it describes the hydrogen bond formed by two
neighbouring heavy ions. This potential is not valid for the proton displaced to some position
between another two heavy ions.
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4 Figure 4(b) of [1] claiming to depict such a solution is absolutely wrong.
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